Technology used in eye exams called microperimetry could prove to be an effective, non-invasive method of identifying early symptoms of multiple sclerosis.
An article recently published by researchers at the UMKC School of Medicine Vision Research Center reports the effective use of microperimetry during routine clinical assessments of multiple sclerosis patients. The article appeared in the research journal BioMed Central Ophthalmology.
Multiple sclerosis is a disease of the brain and spinal cord that affects nearly 400,000 people in the United States and more than 2 million throughout the world. There is no known cure for the potentially disabling disease, but treatment can help manage symptoms and speed up recovery from attacks.
Therefore, a non-invasive, clinically relevant and cost-effective method of identifying damage early would be invaluable to patients and health care providers. It would enable prompt therapy that may slow the progression of the disease and its ocular manifestations before irreversible damage occurs.
The testing method studied by the team of UMKC researchers, students and residents, microperimetry, measures light sensitivity of the center of a patient’s vision and can detect specific areas of decreased sensitivity. It typically takes less than half an hour.
Researchers from the school’s Vision Research Center have previously found the technology to be effective in diagnosing early stages of other diseases of the nervous system such as mild cognitive impairment in Alzheimer’s.
The vision research team of Landon J. Rohowetz, Qui Vu, Lilit Ablabutyan, Sean M. Gratton, Nancy Kunjukunju, Billi S. Wallace and Peter Koulen collaborated to determine subtle changes in visual function related to otherwise undetectable signs of multiple sclerosis. It is the first peer-reviewed study to assess the use of microperimetry, a straightforward and non-invasive vision test, as a tool to detect disease progression in early stage multiple sclerosis patients.
“The findings from this study provide a rationale for the use of microperimetry in the clinical assessment of patients with multiple sclerosis,” said Rohowetz, the study’s lead author. “By identifying visual dysfunction associated with multiple sclerosis, we hope physicians and researchers are able to use this technology to ultimately preserve and improve quality of life for patients with this often-disabling disease.”
More than 80 percent of the patients with multiple sclerosis show signs of impaired vision and 73 percent of MS patients experience visual impairment within the first 10 years of diagnosis, which is comparable to the prevalence of abnormal or impaired muscle function in the disease.
This initial study indicates that light sensitivity measured by microperimetry is lower among multiple sclerosis patients who have otherwise normal vision and no other history of issues with the optic nerve, which connects the eye to the brain. It also revealed a significant correlation between this impaired function and a reduced thickness of the retina in MS patients that is not seen in control subjects.
The report says further studies would look to monitor and evaluate ongoing changes in retina sensitivity and thickness as they correlate to a progression of multiple sclerosis. It will also broaden the approach to include MS patients who have a history of optic neuritis, where measurable damage to the optic nerve has already occurred.